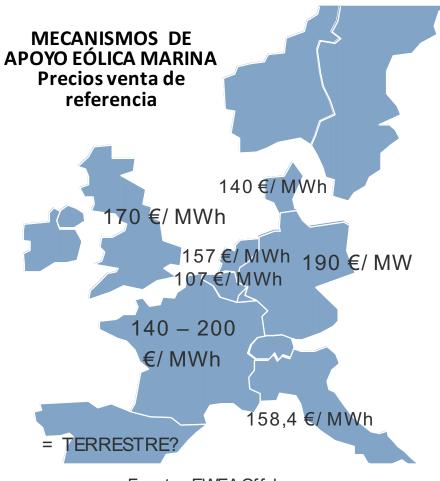

Seminario de Capacitación en Mercados Offshore

Modelo de negocio. Ejemplo para instalación Eólica Offshore Flotante

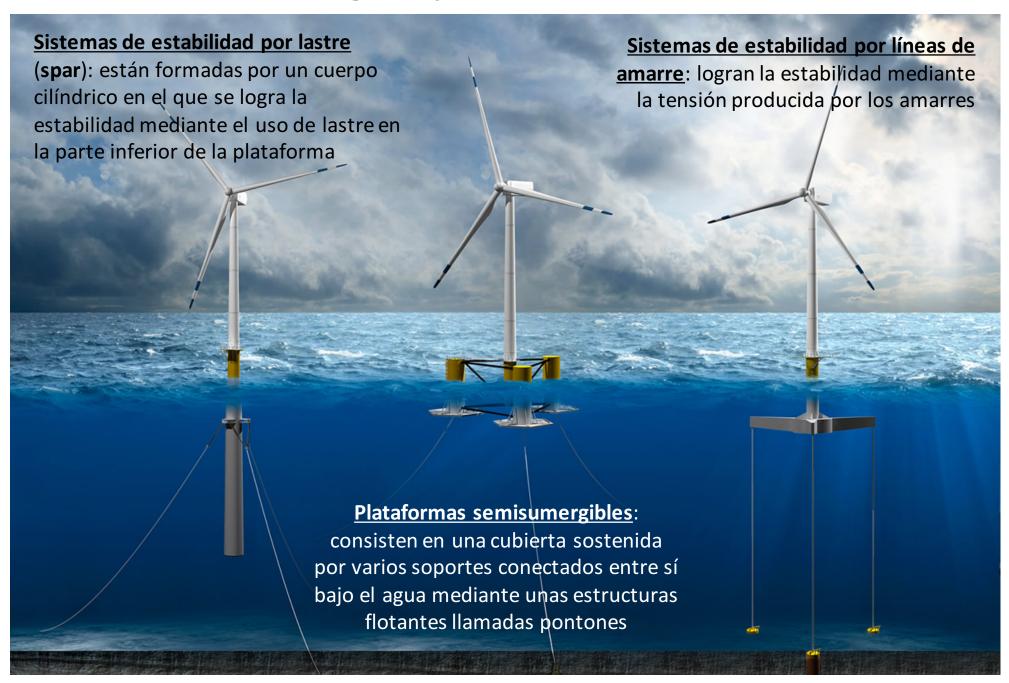
jueves día 23 de Noviembre de 2017

Tecnologías para la fijación de aerogeneradores en el mar



Tecnologías: plataformas flotantes

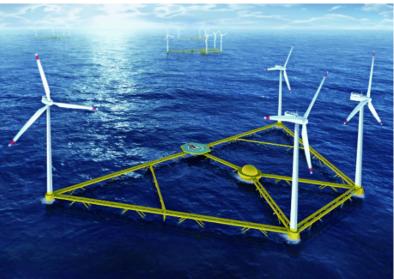
Regulación Eólica Marina en Europa



Fuente: EW	/EA Of	fshore
------------	--------	--------

País	Sistema	Referenda
Alemania	Tarifa	190 los8 primerosañosó 150 los 12 primerosaños Pool el resto (85€/MWh)
Bélgica	Cuota	Primeros 216MW. El resto a 90€/MW (en revisión)
Dinamarca	Concurso /Prima	140€/MWh último precio marcado por P.E. Anholt
Francia	Concurso	Precios referencia concursos 3GW+1GW adjudicado
Holanda	Prima	Límite apoyo a RES: 3.500MM€
Italia	Concurso	Preciosfinales entre el 70-98% del precio CAP (158€/MWh)
Reino Unido	Tarifa+ CV	Cuota anual de 600 MW. Precios CfD

- Remuneración actual PPEE en operación: 140 €/MWh
- Objetivo 2025: 100 €/MWh
- En España no existe mecanismo de apoyo a la eólica marina diferenciado del terrestre
- Costes de la eólica marina cuadruplican a la terrestre


Tecnologías: plataformas flotantes

Nombre	Compañía	País	Estado	Fuente
Tri – floater	ECN, MARIN	Holanda	Concepto ³	(ECN et al., 2002)
Windfloat	Principle Power	USA/Portugal	Prototipo (1:1)	(Principle Power, 2012)
WINDFLO⁴	Nass&Wind, DCNS	Francia	Pruebas	(Rousseau, 2010)
Quadruple floater	Concepto genérico	-	Concepto	(Henderson et al., 2004)
Pillbox Floater/IDEOL	Concepto genérico	Francia	Concepto	(Henderson et al., 2004; IDEOL, 2012)
ITI Energy Barge	NREL (National Research Energy Laboratory)	USA	Concepto	(Jonkman, Matha, 2009; Pascual Vergara, 2011)
Vertiwind	Nenuphar	Francia	Pruebas	(Nenuphar Offshore Wind Turbines, 2012)
WindSea	WindSea	Noruega	Pruebas	(WindSea, 2012)
Hywind	StatoilHydro	Noruega	Prototipo (1:1)	(Pascual Vergara, 2011; Statoil, 2012)
OC3 – Hywind	NREL	USA	Concepto	(Jonkman, Matha, 2009)
Njord	University of Bergen	Noruega	Concepto	(Renvall, 2010)
Deep Wind	Risø-DTU Technical University	Dinamarca	Concepto	(Vita et al., 2010)
MITTLP	NREL; MIT (5 MW)	USA	Concepto	(Jonkman, Matha, 2009; Pascual Vergara, 2011)
Diwet	Blue H	Holanda/Francia	Pruebas	(Pôle Mer Bretagne, 2012)
Sway	Sway	Noruega	Pruebas	(Sway, 2012)
SFV (Space Frame Vessel)	Delft University	Holanda	Concepto	(Henderson, Vugts, o. J.)
FVAWT (Floating Vertical Axis WT)	Floating Windfarms Corporation	USA	Pruebas	(Floating WindFarms Corporation, 2012)
TLB	MIT	USA	Concepto	(Lee, 2005)
SOF⁵	GICON	Alemania	Pruebas	(Großmann, Schuldt, 2011)
AFT ⁶	Nautica WindPower	USA	Pruebas	(Nautica WindPower, 2012)
Colum. articulada	Concepto genérico	-	Concepto	(Drake, Smith, 2010)
Ishihara	-	-	Concepto	(Ishihara et al., 2007)
NMRI ⁷	NMRI	Japón	Concepto	(NMRI, 2012)
Prof Ohta	NMRI	Japón	Concepto	(NMRI, 2012)
Tipo vela	NIES®	Japón	Concepto	(Wang et al., 2010)
TLP - Spar híbrido	MIT	USA	Concepto	(Sclavounos, 2009)
SeaTwirl	SeaTwirl Energy Systems	Suecia	Prototipo (1:50)	(Ehmberg Solutions AB, 2011)

Plataformas flotantes existentes

Análisis de costes: CAPEX & OPEX

El reparto de costes en la construcción de un parque eólico tiene la siguiente estructura:

Definición

- Estudio de mercado
- Tramite administrativo
- Diseño del parque

Diseño

 Ingeniería de proyecto

Fabricación

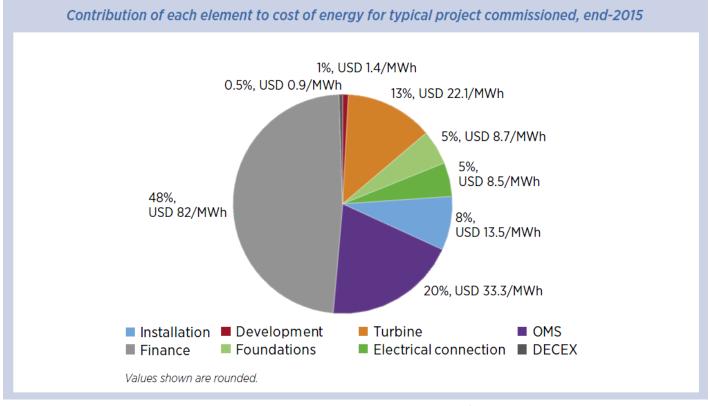
- Aerogenerador
- Plataformas flotantes
- Sistemas de anclaje
- Sistemas eléctricos

Instalación

- Aerogenerador
- Plataformas flotantes
- Sistemas de anclaje
- Sistemas eléctricos
- Puesta en marcha

Explotación

- Impuestos
- Seguros
- Administración
- Operación y mantenimiento


Desmantelamiento

- Aerogeneradores
- Plataformas flotantes
- Sistemas de anclaje
- Sistemas eléctricos
- Limpieza
- Gestión de residuos

Análisis de costes: CAPEX & OPEX

Según IRENA (informe 2016), los valores de **costes de inversión y operación**, así como el **LCoE para un proyecto offshore tipo** son los siguientes:

LCOE breakdown in 2001 and 2015						
Year CAPEX OPEX Net capacity factor LCOE (USD/MW) (USD/MW/yr) (%) (USD/MWh)						
2001	3 430 000	235 000	35%	240		
2015	4 800 000	130 000	46%	170		

Igualmente se muestra el reparto del CAPEX según las principales partidas:

Los valores de ambas tablas se deben tomar como una referencia base, ya que variarán en gran medida dependiendo del proyecto concreto.

Análisis de costes: Variables que afectan al estudio

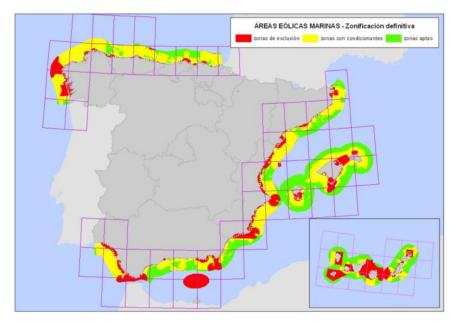
- Variables que son función del emplazamiento donde esté localizado el parque eólico marino flotante:
 - Altura de ola
 - Velocidad del viento a la altura del anemómetro
 - Velocidad de la corriente
 - Período de ola
 - Parámetro de escala
 - Parámetro de forma
 - Profundidad
- Variables que dependen de la **estrategia** tomada:
 - Número de aerogeneradores del parque
 - Tarifa eléctrica
 - Distancia del parque al punto entronque de la red
 - Distancia del parque al astillero
 - Distancia del parque al puerto

Análisis de costes: Variables que afectan al estudio

- Variables que son función de la configuración general del parque eólico:
 - Distancia del astillero al puerto
 - Distancia en tierra
 - Número de diámetros entre aerogeneradores
 - Número de diámetros entre filas
 - Número de aerogeneradores por fila
 - Años de explotación del parque
 - Años de garantía de los componentes del parque
 - Años de implantación del parque
 - Ángulo de incidencia del viento

• VARIABLES DEPENDIENTES DE CARACTERÍSTICAS PARTICULARES DE LAS PARTES:

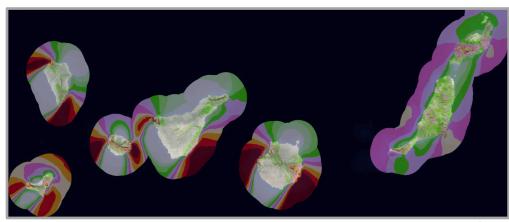
- <u>Aerogenerador</u>: potencia, diámetro, altura, coste, etc.
- <u>Plataforma</u>: espesor casco, nº componentes, lastre, sistemas eléctricos, dimensión de las columnas, nº líneas de amarre, calado etc.
- <u>Amarre</u>: coef. de seguridad, coste, diámetro, etc.
- <u>Anclaje</u>: peso, factor de capacidad portante, ángulo de inclinación, coste kg, dimensiones del ancla, etc.
- <u>Sistema eléctrico</u>: voltaje línea, sección conductor, costes de línea y subestación, parámetros eléctricos, etc.

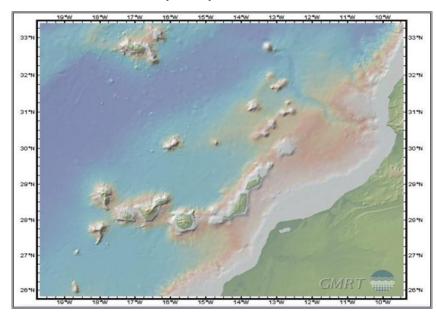

Análisis de costes: Variables que afectan al estudio

- Variables dependientes de la instalación:
 - Coste transporte
 - Coste del alquiler superficie almacenaje
 - Coste de la grua en puerto
 - Nº aerogeneradores
 - Nº plataformas
- Variables relativas al mantenimiento:
 - Número de plataformas de alojamiento
 - Coste de mantenimiento
 - Coef. Mantenimiento subestación
- Variables físico-químicas
- Variables dependientes del astillero
- Variables relacionadas con los costes: estudios de mercado, impacto ambiental, del lecho marino, medición meteorológica, autorizaciones, ingeniería y proyecto, impuestos, etc.
- Variables relacionadas con el desmantelamiento: coste del buque, tiempo de movimientos, coste procesado materiales, etc.

Ejemplos de instalaciones eólicas flotantes

- Variables dependientes de la instalación:
 - Coste transporte
 - Coste del alquiler superficie almacenaje
 - Coste de la grua en puerto
 - Nº aerogeneradores
 - Nº plataformas
- Variables relativas al mantenimiento:
 - Número de plataformas de alojamiento
 - Coste de mantenimiento
 - Coef. Mantenimiento subestación
- Variables **físico-químicas**
- Variables dependientes del astillero
- Variables relacionadas con los costes: estudios de mercado, impacto ambiental, del lecho marino, medición meteorológica, autorizaciones, ingeniería y proyecto, impuestos, etc.
- Variables relacionadas con el desmantelamiento: coste del buque, tiempo de movimientos, coste procesado materiales, etc.


Áreas de interés para el desarrollo de la eólica offshore



En el Estudio Estratégico Ambiental del Litoral Español se han definido un total de 72 áreas eólicas marinas.

Ejemplo de Canarias: del estudio del mapeado batimétrico se deduce que el fondo costero – marino es por lo general escarpado. Sin embargo, existen zonas con plataformas que podrían ser adecuadas para la instalación de parques eólicos offshore.

Análisis del **recurso eólico** de las zonas aptas para la explotación eólica offshore

PLATAFORMA DE ENSAYO DE AEROGENERADORES EN EL PUERTO DE ARINAGA

1º proyecto en Canarias: Certificación del aerogenerador GAMESA G128-5MW OFS

PROTOTIPO INSTALADO EN ARINAGA, GRAN CANARIA (ESPAÑA), junio 2013

Certificado Tipo disponible desde marzo 2014

EVALUACIÓN DE EMPLAZAMIENTO

AEG G128-5.0 MW OFF **POTENCIA** 5.0 MW ALTURA DE BUJE 90 m FACTOR DE CORTADURA (α) 0,15 VELOCIDAD DEL VIENTO (m/s) 10 m/s **K WEIBULL** 2,28 DENSIDAD DEL AIRE (Kg/m³) 1,225 Kg/m³ 4.400 HEN

Proyectos ELISA y TELWIND (ESTEYCO) - PLOCAN

DESARROLLO DE TECNOLOGÍA PARA SUBESTRUCTURA EÓLICA OFFSHORE. PROYECTO SUBVENCIONADO POR EL PROGRAMA H2020

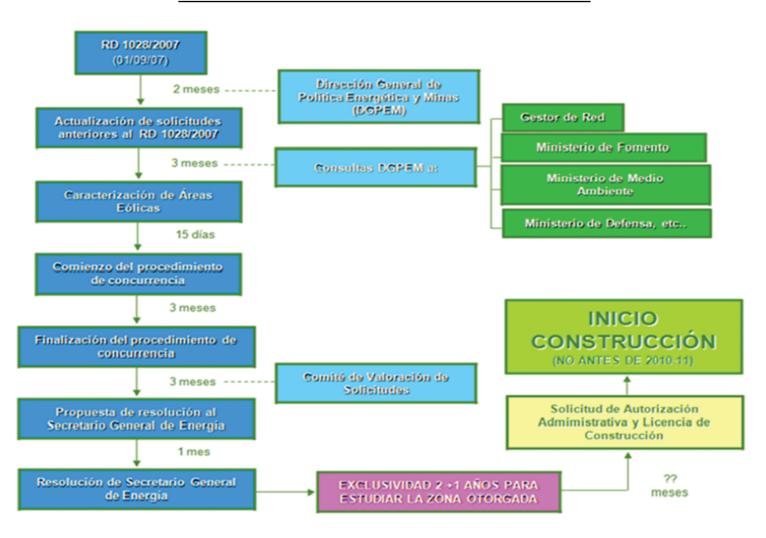
 La cimentación flotante simplifica el proceso de transporte e instalación haciendo uso de la tecnología de torre telescópica y realizando un montaje completo en puerto. Reduce el coste de instalación y operación (no requiere de grandes medios, escasos y caros), y es poco sensible a la agresividad del ambiente marino. pionera en el desarrollo de una nueva tecnología de cimentación flotante para el mercado eólico marino, siguiendo los conceptos desarrollados en la cimentación por gravedad ELISA.

 La tecnología es totalmente escalable gracias al uso de hormigón, lo que permitirá alojar turbinas de gran potencia, superando incluso los 10 MW

Puerto de Arinaga. Gran Canaria

PROYECCIONES: Estudio de casos en Canarias

En este apartado se plantean una serie de estudios técnico – económicos de parques eólicos marinos flotantes.


- Selección de emplazamientos de interés eólico marino según el marco regulatorio de referencia en España, el Real Decreto 1028/2007 sobre autorización de instalaciones en mar territorial.
- Se realiza una estimación de la inversión necesaria para la ejecución de los diferentes escenarios planteados, incluyéndose una valoración general de los costes derivados de la instalación y el mantenimiento de las infraestructuras.
- Por otra parte, se realizan las proyecciones económicas conforme a los escenarios retributivos actuales, según la normativa vigente.

 Finalmente, se analizan los resultados del análisis de sensibilidad para los diferentes supuestos planteados.

> Zonificación definitiva de Canarias del Estudio Estratégico Ambiental

PROYECCIONES: Estudio de casos en Canarias

PROCEDIMIENTO ADMINISTRATIVO:

PROYECCIONES: Análisis de costes

COSTES DE REFERENCIA:

Categoría	Coste Categoría [%]	Componente de la categoría	Coste Componente [%]	Componente total	Coste Componente total [%]	
Concepto y desarrollo	4,1	Mano de obra Materiales Otros	2,38 0,86 0,83	Mano de obra	35	
Turbina	39,1	Mano de obra Materiales	18 14,2			
Balance de la Planta	30,2	Otros Mano de obra Materiales	6,9 8,1 17,3	Materiales	34	
	ŕ	Otros	4,8			
Instalación y puesta en marcha	26,6	Mano de obra Materiales Otros	6,5 1,63 18,5	Otros	31	
TOTAL [%]	100,0	sector A report cor	100,00 nmissioned by the Ren	owablos Advisony Ro	100	

Value breakdown for the offshore wind sector. A report commissioned by the Renewables Advisory Board. BVG Associates.

Febrero 2015.

COSTES DE INFRAESTRUCTURA ELÉCTRICA:

Conexión	Tipología de cable eléctrico submarino y referencia	Coste (M€/km)
AC	Cable tripolar de 36 kV (secciones entre 195 mm² y 500 mm²)	0,3-0,45
HVAC	Cable tripolar de 66 kV (secciones entre 300 mm² y 500 mm²)	0,6-0,75
HVAC	Cable tripolar de 132 kV (secciones entre 300 mm² y 1.000 mm²)	1-1,5
HVDC	Cable impregnados en aceite (potencias entre 250/600 MW)	0,44 – 0,84
HVDC	Cable XLPE para VSC (potencias entre 220/500 MW)	0,30-0,61

PROYECCIONES: Análisis de costes

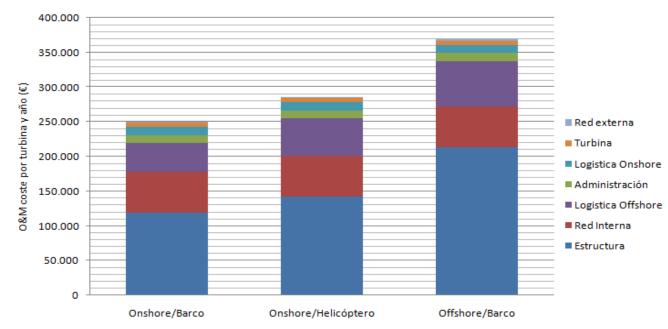
COSTES DE INFRAESTRUCTURA ELÉCTRICA

Una vez conocidas las posibilidades de conexión en el sistema eléctrico insular, se puede afirmar que lo aconsejable es instalar las líneas de evacuación de los futuribles parques eólicos en corriente alterna.

Tomando como referencia los estudios publicados por WindEurope, y las referencias existentes en el PER 2010-2020 a la energía eólica offshore, se toman los costes de conexión a red de 1,225 M€/MW. Según esto, la conexión eléctrica representa el 43% del total de la inversión.

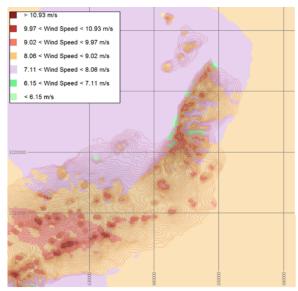
Esta cifra es muy dependiente de las distancias a la Subestación (SET) de la red y de la dimensión del parque (es un coste poco dependiente de potencia eólica del parque). Según esto se obtiene la siguiente tabla:

INVERSIÓN EN INFRAESTRUCTURA ELÉCTRICA PARA PARQUES EÓLICOS OFFSHORE PROPUESTOS							
Parque eólico y potencia	Línea	SET	Otros gastos	Total (€)	Ratio (1.000€/MW)		
LZ-1 – 24 MW	1.340.000€	1.400.000€	170.000€	2.910.000	121,25		
LZ-2 – 12 MW	1.292.000€	\$00.000€	84.000€	2.176.000	181,33		
LZ-3 – 48 MW	24.395.000€	4.600.000€	336.000€	29.331.000	611,06		
LZ-4 – 48 MW	17.170.000€	4.600.000€	336.000€	22.106.000	460,54		
Total/Promedio	44,2 M€	11,4 M€	0,9 M€	56,5 M€	343,55		

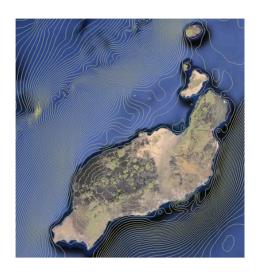

PROYECCIONES: Análisis de costes

COSTES DE OPERACIÓN Y MANTENIMIENTO (OPEX)

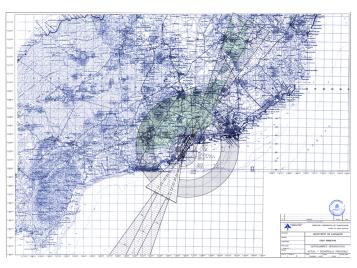
Según el "Estudio económico de la energía eólica" realizado por la EWEA, el coste asociado a los gastos de operación y mantenimiento (OPEX) de los parques eólicos es la partida de mayor peso en los costes totales de explotación de un sistema eólico, junto con la distancia de la instalación a la costa y al puerto de referencia. Se establece que el coste variable medio en el mantenimiento de parques eólicos offshore se encuentra entre 24,9 y 36,7 €/MWh.

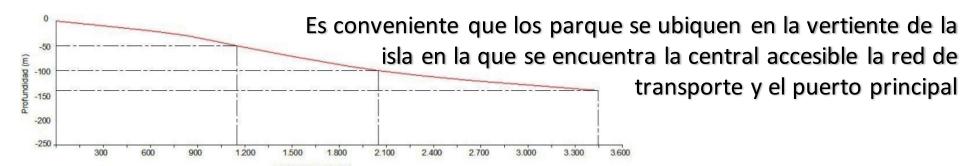

La siguiente gráfica representa los costes anuales de mantenimiento por turbina y año para las tres estrategias de movilidad existentes:

La estrategia "Base onshore y acceso por barco" es la opción más económica para distancias inferiores a 23 km, con costes medios de 250.000 €/año por aerogenerador; si se recurre a la accesibilidad mediante helicóptero, cuando la distancia de la costa se sitúa entre 23 km y 74 km, los costes medios serían de 285.000 €/año por aerogenerador.



Como caso práctico se estudiarán cuatro proyectos de parques eólicos flotantes en Lanzarote, para ello se seguirá el procedimiento descrito.

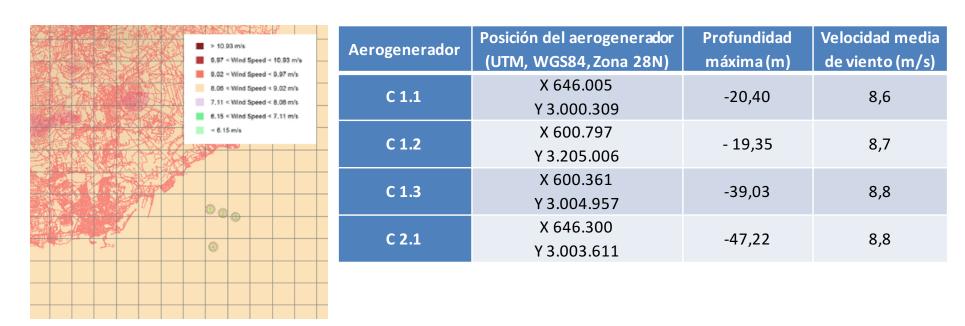

- 1. ESTUDIO DE ÁREAS PARA LA LOCALIZACIÓN DE LAS INFRAESTRUCTURAS EÓLICAS.
 - Factores determinantes para la elección de los emplazamientos:
 - extrínsecos (factores naturales: la batimetría, el recurso eólico, la biocenosis, etc., y factores socioeconómicos: marco regulatorio y actividades humanas),


Batimetría

Servidumbres aeronáuticas

1. ESTUDIO DE ÁREAS PARA LA LOCALIZACIÓN DE LAS INFRAESTRUCTURAS EÓLICAS:

- intrínsecos (propios de la instalación: componentes y la cimentación)
- compuestos (logística asociada para desarrollar el proyecto en todas sus fases y una evaluación económica).


Perfil del trazado de la línea eléctrica con conexión submarina [LZ-4]

2. SELECCIÓN DE ÁREAS DE INTERÉS (considerando los factores analizados)

Localización de áreas de interés para la instalación de parques eólicos marinos							
Situación aproximada	Centro geométrico [Coordenadas UTM]		Dirección predominante del viento	Área [km²] Batimetría <50 m	Área [km²] Batimetría 50 <p*<150 m<="" th=""><th>Distancia a la costa [km]</th></p*<150>	Distancia a la costa [km]	
LZ-1	630.000	3.433.079	NNE	2,44	9,19	2	
LZ-2	646.000	3.103.619	NNE	0,70	3,66	2	
LZ-3	623.000	3.521.120	NNE	0	27,23	10	
LZ-4	610.000	3.299.610	NNE	0	13,12	2	

3. DISEÑO DE LOS PARQUES EÓLICOS. POTENCIA INSTALABLE y ENERGÍA PRODUCIDA

Si consideramos un aerogenerador tipo de 6MW, diámetro de rotor de 154 m y empleando la separación de aerogeneradores señalada ajustada a norma, y los datos del recurso eólico, se obtienen los resultados energéticos de los parques eólicos:

Recurso eólico de LZ-1 a 100 m de altura

Energía neta (P90 – P50): 70.708 MWh/año – 96.549 MWh/año.

Factor de capacidad (P90 – P50): 33,6% – 45,9%.

4. RESULTADOS

Parque eólico	Potencia [MW]		
LZ-1	24	P< 50	2
LZ-2	12	P< 50	2
LZ-3	48	50 <p<150< th=""><th>9,6</th></p<150<>	9,6
LZ-4	48	50 <p<150< th=""><th>2,6</th></p<150<>	2,6

PRODUCCIÓN TEÓRICA DE LAS INSTALACIONES							
Datos	LZ-1	LZ-2	LZ-3	LZ4	Producción		
Datos	24 MW	12 MW	48 MW	48 MW	total		
		Probabilidad	50%				
Producción (MWh)	96.549	45.138	168.218	155.547			
Potencia (MW)	24	12	48	48	465.452		
Horas equivalentes	4.023	3.762	3.504	3.240			
		Probabilidad	90%				
Producción (MWh)	70.708	33.771	119.664	119.665			
Potencia (MW)	24	12	48	48	343.808		
Horas equivalentes	2.946	2.814	2.493	2.493			

Caso de parques eólicos en Lanzarote

Del análisis técnico de los proyecto resultan las configuraciones de parque y requerimientos de infraestructuras que derivan en los <u>presupuestos</u> siguientes:

INVERSION INICIAL (CAPEX)						
Parque eólico	LZ-1	LZ-2	LZ-3	LZ-4	Total	
	24 MW	12 MW	48 MW	48 MW	IOtal	
Aerogeneradores (€)	39.200.000	19.600.000	78.400.000	78.400.000	215,6 M€	
Cimentación (€)	20.000.000	10.000.000	40.000.000	40.000.000	110,0 M€	
Conexión eléctrica (€)	1.340.000	1.292.000	24.395.000	17.170.000	44,2 M€	
Subestación (€)	1.400.000	800.000	4.600.000	4.600.000	11,4 M€	
Comp. Reactiva (€)	170.000	84.000	336.000	336.000	0,9 M€	
Instalación (€)	3.160.000	1.580.000	6.320.000	6.320.000	17,4 M€	
Presupuesto (PEM)	65.270.000	33.356.000	154.051.000	146.826.000	399,5 M€	
Gasto general (10%)	6.527.000	3.335.600	15.405.100	14.682.600	39,9 M€	
B. Industrial (6%)	3.916.200	2.001.360	9.243.060	8.809.560	23,9 M€	
Impuestos [IGIC] (7%)	4.568.900	2.334.920	10.783.570	10.277.820	27,9 M€	
Presupuesto (PEC)	80.282.100	41.027.880	189.482.730	180.595.980	491,4 M€	
Ratio de inversión	3.345 €/kW	3.419 €/kW	3.948 €/kW	3.762 €/kW	3.619 €/kW	

MARCO RETRIBUTIVO ESPECÍFICO

- Real Decreto 413/2014.
- Orden Ministerial IET/1045/2014
- Orden IET/1459/2014 Según esta orden la tarifa de la instalación estaría compuesta por cuatro parámetros fundamentales:

Tarifa P.Eolico = Mercado + Retribución a inversión + Retribución a operación + Incentivo

	Tarifa eléctrica aplicable para eólica (Grupo b.2 – Orden IET/1459/2014) - Lanzarote							
Año	Mercado (€/MWh)	Retribución a la inversión (€/MWh)	Retribución a la operación (€/MWh)	Incentivo por reducción de coste de generación (€/MWh)	Tarifa eléctrica (€/MWh)			
2014	48,2	28,2	0,0	7,47	83,9			
2015	49,5	28,1	0,0	7,47	83,8			
2016	49,8	28,2	0,0	7,47	83,9			
Media	49,17	25,2	0,0	7,47	83,9			

No existe régimen retributivo para la eólica marina. En España se está solicitando al Ministerio de Industria una retribución específica por proyecto de I+D. RD 1028/2007 que establece las características que debe tener el proyecto de I+D

GASTOS DE EXPLOTACIÓN (OPEX)

Los gastos de O&M para un parque eólico offshore se establecen en un intervalo de entre los 25 y 37 €/MWh. Para el estudio de viabilidad, se optará por el valor más desfavorable de la horquilla fijada, 36,6 €/MWh.

Determinadas tareas de mantenimiento correctivo requerirán el apoyo de puertos de Nivel 1 al estar éstos acondicionados para la carga y atraque de barcos de gran calado. En este sentido los parques eólicos propuestos en LZ-3 y LZ-4, se encuentran a una distancia de entre 12 MN, por lo que habría que suponer un aumento del OPEX del 14% en concepto de logística y cargos arancelarios, por ello para estos proyectos singulares propuestos el OPEX se fijará en 41,70 €/MWh.

Por otra parte, suele considerarse que, en el año 13, una vez transcurrida la mitad de la vida útil de un parque eólico, se debe llevar a cabo tareas de reacondicionamiento para mantener las instalaciones con una alta disponibilidad técnica. Este coste dependería del estado en el que se encuentren las instalaciones, no obstante se estima mediante un porcentaje sobre la inversión inicial del 5%.

FINANCIACIÓN:

Se supondrá que toda la inversión se costeará con recursos propios de la entidad promotora.

AMORTIZACIÓN

Se ha calculado la amortización lineal de las instalaciones conforme a los periodos máximos y los coeficientes de amortización aplicables según el Real Decreto 1777/2004, por el que se aprueba el Reglamento de Impuestos sobre Sociedades.

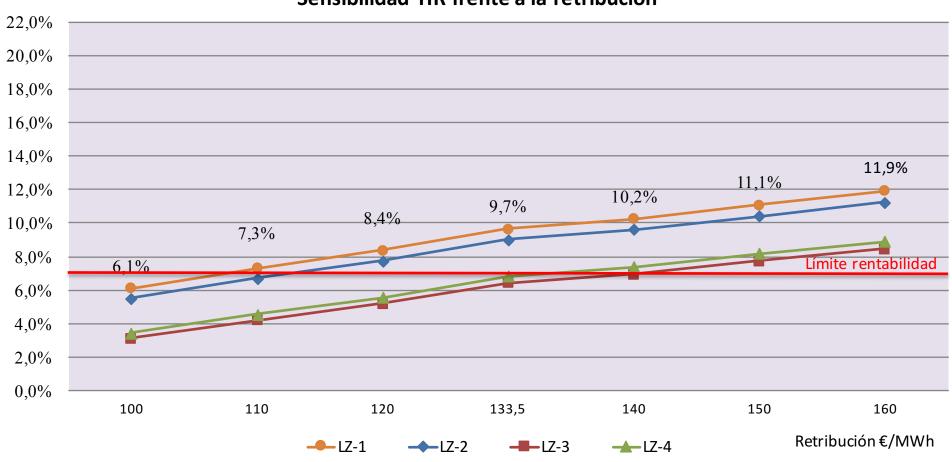
AMORTIZACIÓN APLICABLE PARA EÓLICA OFFSHORE							
Inmovilizado	Coeficiente de	Período máximo de					
	amortización	amortización					
Central eólica	8%	25 años					
Línea de transporte	5%	40 años					
Subestaciones eléctrica	5%	40 años					
Otras instalaciones técnicas	8%	25 años					

AMORTIZACIÓN DE LOS PARQUES EÓLICOS PROPUESTOS:

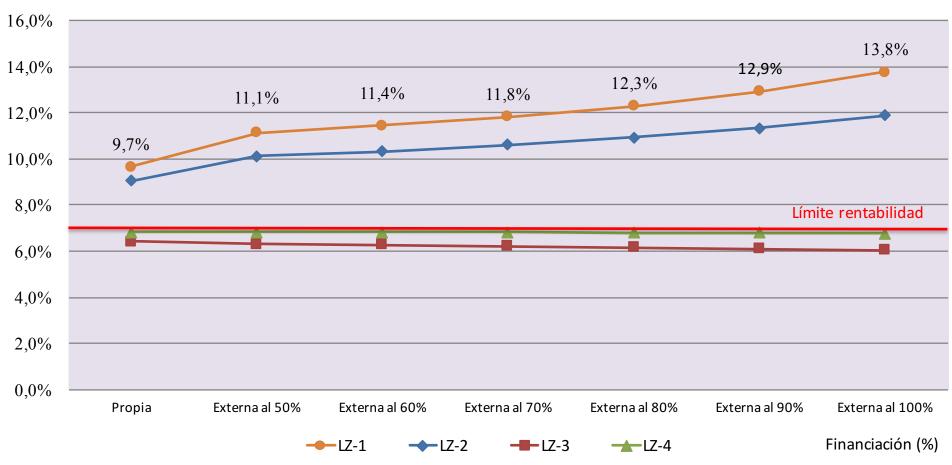
Inmovilizado	Inversión inicial	Valor residual	Coef.	Años	Amortización				
LZ-1									
Central eólica	72.816.000€	0	8%	12	6.068.000				
Línea de transporte	1.648.200€	618.075	8%	12	85.844				
Subestaciones eléctrica	1.722.000€	645.750	8%	12	89.688				
Otras instalaciones técnicas	4.095.900€ 0		8%	12	341.325				
Valor adoptado	80.282.100€	1.263.825	8%	12	6.584.856				
LZ-2									
Central eólica	36.408.000€	0	8%	12	3.034.000				
Línea de transporte	1.589.160€	595.935	8%	12	82.769				
Subestaciones eléctrica	984.000€	369.000	8%	12	51.250				
Otras instalaciones técnicas	2.046.720€	0	8%	12	170.560				
Valor adoptado	41.027.880€	964.935	8%	12	3.338.579				
LZ-3									
Central eólica	145.632.000€	0	8%	12	12.136.000				
Línea de transporte	30.005.850€	11.252.194	8%	12	1.562.805				
Subestaciones eléctrica	5.658.000€	2.121.750	8%	12	294.688				
Otras instalaciones técnicas	8.186.880€	0	8%	12	682.240				
Valor adoptado	189.482.730€	13.373.944	8%	12	14.675.732				
LZ-4									
Central eólica	145.632.000€	0	8%	12	12.136.000				
Línea de transporte	21.119.100€	7.919.663	8%	12	1.099.953				
Subestaciones eléctrica	5.658.000€	2.121.750	8%	12	294.688				
Otras instalaciones técnicas	8.186.880€	0	8%	12	682.240				
Valor adoptado	180.595.980€	10.041.413	8%	12	14.212.881				

CALCULO DE LA RENTABILIDAD DE LA INVERSIÓN:

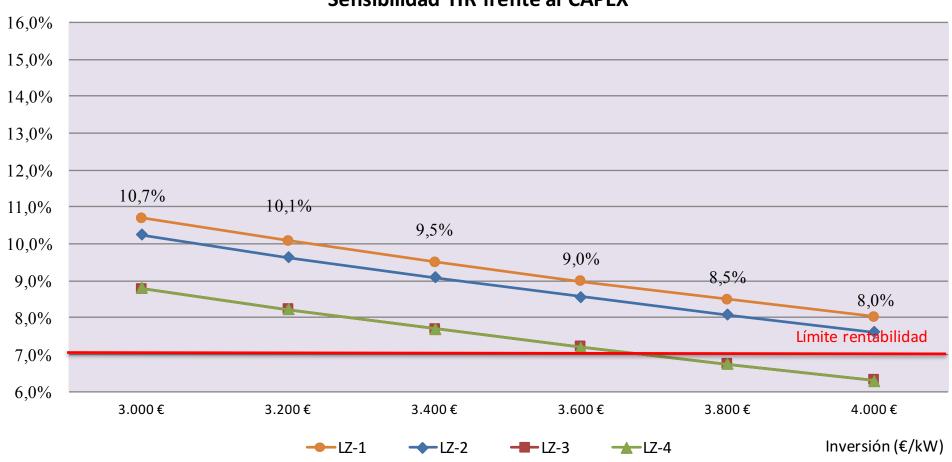
Se realiza el cálculo de los Flujos Netos de Caja, actualizados a un coste de capital del 7%. Posteriormente, se determina la rentabilidad de los proyectos sugeridos mediante los parámetros VAN (Valor Actual Neto), TIR (Tasa Interna de Retorno) y Payback (retorno de la inversión).

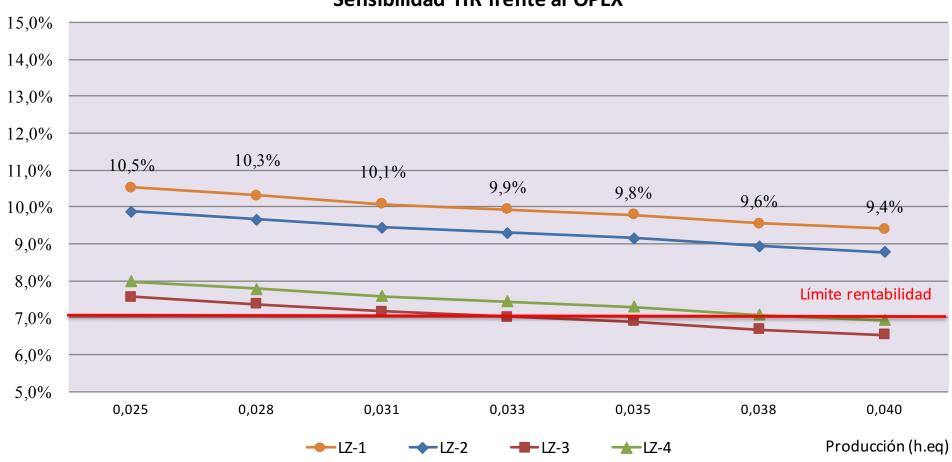

Se simula la viabilidad de la inversión, teniendo en cuenta dos supuestos: estimaciones de producción con probabilidad al 50% y al 90%:

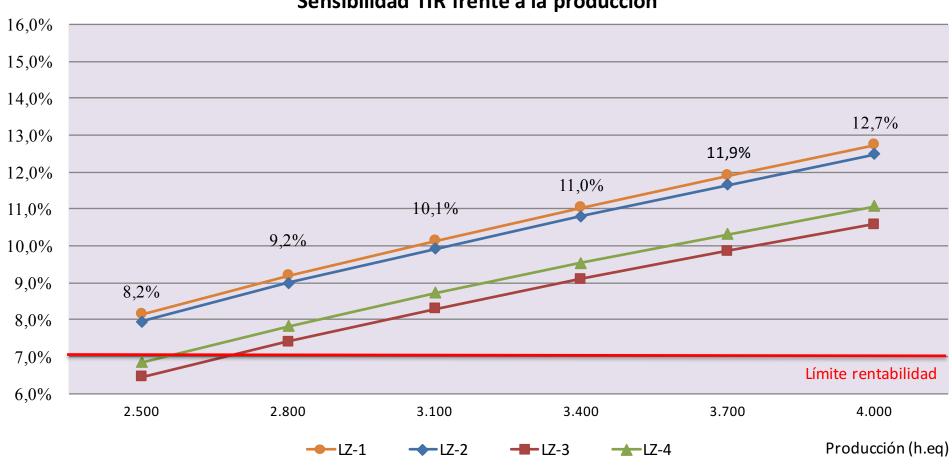
VIABILIDAD ECONÓMICA DE LOS PROYECTOS EÓLICOS OFFSHORE EN LANZAROTE							
Proyecto	Potencia	VAN	TIR	Payback			
Resultados económicos con estimaciones de producción P50							
LZ-1	24 MW	54.938.894€	12,8%	12			
LZ-2	12 MW	22.916.444€	11,8%	13			
LZ-3	48 MW	49.493.057€	9,4%	18			
LZ-4	48 MW	41.633.038€	9,1%	19			
Resultados económicos con estimaciones de producción P90							
LZ-1	24 MW	23.221.082€	9,7%	17			
LZ-2	12 MW	8.938.439€	9,0%	19			
LZ-3	48 MW	-11.052.614€	6,4%	0			
LZ-4	48 MW	-3.316.678€	6,8%	0			


Para el cálculo anterior se ha considerado que el precio de mercado de la energía eléctrica aumenta a razón del 4% anual, y que la retribución se mantiene constante durante toda la vida útil regulatoria del parque eólico

30


Sensibilidad TIR frente a la retribución


Sensibilidad TIR frente a la financiación


Sensibilidad TIR frente al CAPEX

Sensibilidad TIR frente al OPEX

Sensibilidad TIR frente a la producción

